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LETTER TO THE EDITOR 

Renormalisation-group study of fully directed self-avoiding 
walks? 

S L A de QueirozS 
Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Received 20 June 1983 

Abstract. We present a discussion of the critical properties of fully directed self-avoiding 
walks on hypercubic lattices. A position-space renormalisation group transformation is 
carried out analytically in two dimensions for any value of the scaling factor 6; the finite-size 
scaling properties of the transformation are explicitly exhibited, including the well known 
finite-size scaling hypothesis v(6) - U - (In b)-’. It is shown that the RG transformation 
in this case is sensitive to vi,, thus giving support to existing arguments. 

In the past few years, a considerable amount of work has been done in the study of 
directed lattice problems: to give only a partial list of references, we note that directed 
percolation has been studied through finite-size scaling (Domany and Kinzel 1981, 
Kinzel and Yeomans 1981) and position-space renormalisation group ( PSRG) tech- 
niques (Redner 1981, 1982, Redner and Brown 1981, Oliveira 1983); the concept of 
pseudo-correlation length has been discussed by Klein and Kinzel (1981); directed 
lattice animals were studied by Redner and Yang (1982), Redner and Coniglio (1982) 
and Family (1982), and their relation to the Lee-Yang edge singularity has been 
discussed by Cardy (1982) and Stanley et al (1982); Chakrabarti and Manna (1983) 
introduced a type of directed self-avoiding walk (SAW), whose properties they estab- 
lished mainly through the analysis of numerical data. Directed SAWS are studied also 
by Redner and Majid (1983) through transfer-matrix techniques, and by Cardy (1983), 
who uses a field-theoretical approach. 

In this letter we present a discussion of critical properties of fully directed SAWS 
on hypercubic lattices. Besides its interest as a problem on lattice statistics in its own 
right, the possibility arises that directed SAWS may be of use as a model for linear 
polymers under anisotropic conditions, e.g. in a flowing solvent. 

We first define the problem and recall some exact results; then we show that a 
PSRG calculation for fully directed SAWS on a square lattice can be carried out exactly 
for any scaling factor and discuss the limiting behaviour of the RG transformation as 
the scaling factor approaches infinity; finally we compare our results with those of 
Chakrabarti and Manna (1983) and briefly summarise our findings. 

Consider a ddimensional hypercubic lattice and the geometrical object that is built 
by starting at a given point (the origin) and advancing at random through steps linking 
nearest-neighbour sites, with the constraint that any step be given only in the positive 
direction of a Cartesian axis. This is what we define as a fully directed SAW. Undirected 
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SAWS have long since been used as a model for linear polymers in good, isotropic, 
solvents (McKenzie 1976, de Gennes 1979); of course, the constraint on directionality 
already implies non-intersection, but the converse is not true: directionality, in the 
sense stated above, is a much more stringent condition than non-intersection. Actually, 
directed and undirected SAWS belong to different universality classes, as already pointed 
out by Chakrabarti and Manna (1983). 

As usual in directed problems, two distinct lengths diverge in the limit of large 
number N of steps: hl, which gives the average radius of the walk parallel to the 
(1, 1 , .  . . , 1) or ‘easy’ axis, and tl, related to the transverse width in directions 
perpendicular to the anisotropy axis. In analogy with the isotropic case, we define two 
‘correlation length’ exponents ul, and U, through 

41 -Nul!  51-N”-, N+m.  (1) 

For any dimension d, every directed step gives a positive contribution of the same 
size to hl, hence 

U11 = 1 ( 2 )  
for any d. On the other hand, the projection of the directed SAW on the perpendicular 
direction is a random walk, whence 

(3) 1 Ui =z 
for any d. 

Another results can be obtained if we analyse the susceptibility exponent y ;  we 
note that the number of fully directed SAWS of n steps on a ddimensional hypercubic 
lattice is 

N, = d”.  (4) 

N, , -pnny- l  ( 5 )  

Since the exponent y is defined through 

where p is the effective coordination number of the lattice (McKenzie 1976, de Gennes 
1979), one readily obtains 

y = l ,  p = d  (6) 
for any d. Results (21, (3) and (6) have been found to hold for any d by Cardy (1983), 
and for d = 2  by Redner and Majid (1983); Chakrabarti and Manna (1983) obtain 
y = l  for d = 2 .  

The motivation for the use of an RG scheme in the present case, where the exact 
answers are known, is twofold: for one thing, it is interesting to check the precise 
manner in which the approximate RG results approach the exact ones; this knowledge 
may be of use in other situations where only approximate answers are available. 
Second, there is the question of whether the exponent v obtained in a RG calculation 
for a directed problem is V I ] ,  vi or something else: although there are plausibility 
arguments favouring UII  in the case of directed percolation (Redner 1982), the question 
has not been fully settled (Redner and Yang (1982); see also Klein and Kinzel (1981) 
for a discussion of the meaning of tL in directed percolation). 

In order to address the two points raised above, we generalise a PSRG approach 
originally introduced for undirected SAWS (de Queiroz and Chaves 1980), now allowing 
for directionality: to each step a fugacity p is assigned; only directed steps are allowed. 
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The lattice is partitioned into cells of linear size b; each of these cells is transformed, 
in the renormalised lattice, into a simpler cell of linear size 1. To each bond of the 
renormalised cell, a fugacity p ’  is assigned, which equals the sum of the fugacities of 
all walks on the primitive cell that traverse it in a given direction, starting from the 
corner. The non-trivial fixed point p* of the transformation p ’ = f b ( p )  gives the RG 

estimate for the critical fugacity; v=ln  b/ln(dp’/dp),* is the RG estimate for the 
correlation-length exponent. As is the case for SAWS and lattice animals, the critical 
fugacity is pc= 1/p (McKenzie 1976, Family 1982). From (6), 

p c =  l l d  (7) 
in our case. 

We now specialise to two dimensions, where it is possible to obtain a simple form 
for the RG transformation for any b. We note that the configurations we are looking 
for are the same as in Domany and Kinzel (1981), in the context of an anisotropic 
directed percolation problem (with all horizontal bonds present). The fun recursion 
relation is found to be 

Recursion relation (8) has p* = as a fixed point for any b. To see this, note that (a) 
Z2(p)=1+2p=2 at p = &  (b) it is easy to show that if 2),(1/2)=2’-’, then 
2b+1(1/2) = 2’. From (7), this is the exact result in two dimensions; the situation here 
resembles the case of isotropic bond percolation on a square lattice, where the use of 
self-dual cells in a RG transformation implies that the exact value of the critical 
concentration (112) is obtained for any cell size (see e.g. Oliveira et a1 1980). 

We do not know at present what lattice property (if any) similar to self-duality 
reflects itself in this exact result; however, we would like to point out that, in d = 3, 
the recursion relation for a 2 X 2 X 2 cell is 

p’  = p 2  + 4p3 + 6p4 (9) 
which admits p* = f as its non-trivial fixed point; from (7) ,  this is also the exact value 
for pc in d = 3. This fact has no parallel in isotropic bond percolation; there, the d = 3 
cells provide approximate results for the threshold concentration (see e.g. de Magalhies 
er a1 1980). 

Referring back to the two-dimensional problem, it can be shown easily that the 
eigenvalue of transformation (8) is given by 

From this, and using Stirling’s formula N !  = N N  e - N ( 2 ~ N ) ” 2  ( N +  CO), one obtains 

dpb/dpl,=,/2 = 2b[l - ( ~ r b ) - ” ~ ]  ( b - a ) .  (11) 

vb = 1 -In 2/ln b ( b - a )  (12) 

Hence the RG approximation €or the correlation-length exponent, vb, is 

to leading order in inverse powers of b. 
If instead of ‘cell-to-bond’ transformation we perform a ‘cell-to-cell’ renormalisa- 

tion (Reynolds et a1 1980) between cells of respective sizes b and b’, the fixed point 
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is still at p = i ,  and the approximation for v is 

whence one obtains from ( 1  1) for b’ = b + 1 and b + 00: 

to leading order in inverse powers of b. 
At this point, some remarks are worth making. 
(i) Equation (12) is one of the few examples where the finite-size scaling hypothesis 

v b -  v - (In b)-l is analytically exhibited (see e.g. Tsallis (1982) and references therein 
for a discussion of this point). 

(ii) The convergence of v b + l . b  towards 1 is much faster than that of v b ;  this is 
expected on general grounds (Reynolds et a1 1980). However, the inverse square-root 
form displayed above may not be of general validity: Tsallis (1982), for example, finds 
v b , b - 2 -  v - b-d for a majority-rule model. 

(iii) The value of v asymptotically obtained equals that of V I I ,  thus giving support 
to arguments like the one of Redner (1981); also, the slow convergence shown here 
may, if it has a parallel in the case of directed animals, explain why the RG calculations 
of Redner and Yang (1982) were unable to pinpoint either vi1 or v, unambiguously. 

(iv) Although in the present case convergence is eventually reached, this may not 
always be true: in the problem of directed percolation, Kertesz and Vicsek (1980) 
obtained, through extrapolation of Monte Carlo results for lattices of up to 400 X 400 
sites, a value of yl = 1.65; the accepted value is 1.74. 

Chakrabarti and Manna (1983) have introduced a model which is slightly different 
from ours; on a square lattice, they study SAWS that have a preferential orientation 
only along one Cartesian axis, say, the vertical one; in the perpendicular direction, the 
walks can go either way (backward steps are of course not allowed). In analogy with 
the distinction made by Redner and Yang (1982) concerning lattice animals, we call 
their model partially directed SAWS, whereas ours is fully directed SAWS. As the 
difference between the two models amounts to changing the direction of the external 
bias (Redner and Yang 1982, Kertesz and Vicsek 1980), it is expected that both 
problems are in the same universality class. 

Indeed, Redner and Majid (1983) find vi = $ and vII = 1 for partially directed SAWS 

on a number of two-dimensional lattices; Cardy (1983) also obtains these results from 
a field-theoretical approach. 

However, from their analysis of numerical simulations for steps of length up to 
N = 14, Chakrabarti and Manna (1983) obtain a value of v = 0.861t0.02, which is 
clearly in disagreement with our results. Since their data come from exact enumeration 
of SAWS, the average end-to-end distance thus calculated must be sensitive to the 
dominant diverging length, that is, hi. In this connection, we would like to point out 
that the logarithmic convergence that arises in the RG treatment may be showing that 
properties of directed SAWS converge slowly; for example, from (10) we obtain 
v14 = 0.832 whereas from (13) we obtain v14,13 = 0.919. It is to be noted that, for vI4, 
the smallest walk that enters in the RG calculation is of length 14 steps. Although 
different methods cannot be compared so directly, we feel that a RG calculation on a 
14 X 14 cell already takes into account a significant number of configurations; even so, 
the result obtained for v is rather poor. Perhaps it is this sort of effect that manifests 
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itself in Chakrabarti and Manna’s results. See Redner and Majid (1983) for further 
comments on this point. 

In summary, we have presented a discussion of critical properties of fully directed 
SAWS on hypercubic lattices. A PSRG transformation has been carried out analytically 
in two dimensions for any value of the scaling factor, and the finite-size scaling properties 
of the transformation have been explicitly exhibited. It has been shown that the RG 
transformation in this case is sensitive to the parallel correlation-length exponent, thus 
giving support to existing arguments. 

The author would like to thank P M Oliveira and R R dos Santos for interesting 
suggestions and for a critical reading of the manuscript. 
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